3.7.100 \(\int \frac {d+e x^2}{(a+b \text {ArcSin}(c x))^{3/2}} \, dx\) [700]

Optimal. Leaf size=394 \[ -\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \text {ArcSin}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \text {ArcSin}(c x)}}-\frac {e \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {2 d \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c}+\frac {e \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}+\frac {e \sqrt {\frac {\pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c^3}+\frac {2 d \sqrt {2 \pi } \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c}-\frac {e \sqrt {\frac {3 \pi }{2}} \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} c^3} \]

[Out]

-1/2*e*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c^3+1/2*e*
FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/c^3+1/2*e*cos(3*a
/b)*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/b^(3/2)/c^3-1/2*e*FresnelC(6^(
1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/b^(3/2)/c^3-2*d*cos(a/b)*FresnelS(2
^(1/2)/Pi^(1/2)*(a+b*arcsin(c*x))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/b^(3/2)/c+2*d*FresnelC(2^(1/2)/Pi^(1/2)*(a+b
*arcsin(c*x))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/b^(3/2)/c-2*d*(-c^2*x^2+1)^(1/2)/b/c/(a+b*arcsin(c*x))^
(1/2)-2*e*x^2*(-c^2*x^2+1)^(1/2)/b/c/(a+b*arcsin(c*x))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.51, antiderivative size = 394, normalized size of antiderivative = 1.00, number of steps used = 21, number of rules used = 9, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.450, Rules used = {4757, 4717, 4809, 3387, 3386, 3432, 3385, 3433, 4727} \begin {gather*} \frac {\sqrt {\frac {\pi }{2}} e \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {3 \pi }{2}} e \sin \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {\sqrt {\frac {\pi }{2}} e \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}+\frac {\sqrt {\frac {3 \pi }{2}} e \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}+\frac {2 \sqrt {2 \pi } d \sin \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c}-\frac {2 \sqrt {2 \pi } d \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c}-\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \text {ArcSin}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \text {ArcSin}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/(a + b*ArcSin[c*x])^(3/2),x]

[Out]

(-2*d*Sqrt[1 - c^2*x^2])/(b*c*Sqrt[a + b*ArcSin[c*x]]) - (2*e*x^2*Sqrt[1 - c^2*x^2])/(b*c*Sqrt[a + b*ArcSin[c*
x]]) - (e*Sqrt[Pi/2]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(b^(3/2)*c^3) - (2*d*Sqr
t[2*Pi]*Cos[a/b]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(b^(3/2)*c) + (e*Sqrt[(3*Pi)/2]*Cos[(
3*a)/b]*FresnelS[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]])/(b^(3/2)*c^3) + (e*Sqrt[Pi/2]*FresnelC[(Sqrt[2
/Pi]*Sqrt[a + b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(b^(3/2)*c^3) + (2*d*Sqrt[2*Pi]*FresnelC[(Sqrt[2/Pi]*Sqrt[a +
 b*ArcSin[c*x]])/Sqrt[b]]*Sin[a/b])/(b^(3/2)*c) - (e*Sqrt[(3*Pi)/2]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c*x
]])/Sqrt[b]]*Sin[(3*a)/b])/(b^(3/2)*c^3)

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4717

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]*((a + b*ArcSin[c*x])^(n + 1)/
(b*c*(n + 1))), x] + Dist[c/(b*(n + 1)), Int[x*((a + b*ArcSin[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x] /; Free
Q[{a, b, c}, x] && LtQ[n, -1]

Rule 4727

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 - c^2*x^2]*((a + b*ArcSin
[c*x])^(n + 1)/(b*c*(n + 1))), x] - Dist[1/(b^2*c^(m + 1)*(n + 1)), Subst[Int[ExpandTrigReduce[x^(n + 1), Sin[
-a/b + x/b]^(m - 1)*(m - (m + 1)*Sin[-a/b + x/b]^2), x], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x]
&& IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]

Rule 4757

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])

Rule 4809

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x],
 x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m,
 0]

Rubi steps

\begin {align*} \int \frac {d+e x^2}{\left (a+b \sin ^{-1}(c x)\right )^{3/2}} \, dx &=\int \left (\frac {d}{\left (a+b \sin ^{-1}(c x)\right )^{3/2}}+\frac {e x^2}{\left (a+b \sin ^{-1}(c x)\right )^{3/2}}\right ) \, dx\\ &=d \int \frac {1}{\left (a+b \sin ^{-1}(c x)\right )^{3/2}} \, dx+e \int \frac {x^2}{\left (a+b \sin ^{-1}(c x)\right )^{3/2}} \, dx\\ &=-\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {(2 c d) \int \frac {x}{\sqrt {1-c^2 x^2} \sqrt {a+b \sin ^{-1}(c x)}} \, dx}{b}+\frac {(2 e) \text {Subst}\left (\int \left (-\frac {\sin (x)}{4 \sqrt {a+b x}}+\frac {3 \sin (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{b c^3}\\ &=-\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {(2 d) \text {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{b c}-\frac {e \text {Subst}\left (\int \frac {\sin (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^3}+\frac {(3 e) \text {Subst}\left (\int \frac {\sin (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^3}\\ &=-\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {\left (2 d \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{b c}-\frac {\left (e \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^3}+\frac {\left (3 e \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^3}+\frac {\left (2 d \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{b c}+\frac {\left (e \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^3}-\frac {\left (3 e \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c x)\right )}{2 b c^3}\\ &=-\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {\left (4 d \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b^2 c}-\frac {\left (e \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b^2 c^3}+\frac {\left (3 e \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b^2 c^3}+\frac {\left (4 d \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b^2 c}+\frac {\left (e \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b^2 c^3}-\frac {\left (3 e \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c x)}\right )}{b^2 c^3}\\ &=-\frac {2 d \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {2 e x^2 \sqrt {1-c^2 x^2}}{b c \sqrt {a+b \sin ^{-1}(c x)}}-\frac {e \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}-\frac {2 d \sqrt {2 \pi } \cos \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c}+\frac {e \sqrt {\frac {3 \pi }{2}} \cos \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right )}{b^{3/2} c^3}+\frac {e \sqrt {\frac {\pi }{2}} C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c^3}+\frac {2 d \sqrt {2 \pi } C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{b^{3/2} c}-\frac {e \sqrt {\frac {3 \pi }{2}} C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{b^{3/2} c^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.70, size = 417, normalized size = 1.06 \begin {gather*} \frac {e^{-\frac {3 i (a+b \text {ArcSin}(c x))}{b}} \left (e e^{\frac {3 i a}{b}}-4 c^2 d e^{\frac {3 i a}{b}+2 i \text {ArcSin}(c x)}-e e^{\frac {3 i a}{b}+2 i \text {ArcSin}(c x)}-4 c^2 d e^{\frac {3 i a}{b}+4 i \text {ArcSin}(c x)}-e e^{\frac {3 i a}{b}+4 i \text {ArcSin}(c x)}+e e^{\frac {3 i (a+2 b \text {ArcSin}(c x))}{b}}+\left (4 c^2 d+e\right ) e^{\frac {2 i a}{b}+3 i \text {ArcSin}(c x)} \sqrt {-\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {1}{2},-\frac {i (a+b \text {ArcSin}(c x))}{b}\right )+\left (4 c^2 d+e\right ) e^{\frac {4 i a}{b}+3 i \text {ArcSin}(c x)} \sqrt {\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {1}{2},\frac {i (a+b \text {ArcSin}(c x))}{b}\right )-\sqrt {3} e e^{3 i \text {ArcSin}(c x)} \sqrt {-\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {1}{2},-\frac {3 i (a+b \text {ArcSin}(c x))}{b}\right )-\sqrt {3} e e^{3 i \left (\frac {2 a}{b}+\text {ArcSin}(c x)\right )} \sqrt {\frac {i (a+b \text {ArcSin}(c x))}{b}} \text {Gamma}\left (\frac {1}{2},\frac {3 i (a+b \text {ArcSin}(c x))}{b}\right )\right )}{4 b c^3 \sqrt {a+b \text {ArcSin}(c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/(a + b*ArcSin[c*x])^(3/2),x]

[Out]

(e*E^(((3*I)*a)/b) - 4*c^2*d*E^(((3*I)*a)/b + (2*I)*ArcSin[c*x]) - e*E^(((3*I)*a)/b + (2*I)*ArcSin[c*x]) - 4*c
^2*d*E^(((3*I)*a)/b + (4*I)*ArcSin[c*x]) - e*E^(((3*I)*a)/b + (4*I)*ArcSin[c*x]) + e*E^(((3*I)*(a + 2*b*ArcSin
[c*x]))/b) + (4*c^2*d + e)*E^(((2*I)*a)/b + (3*I)*ArcSin[c*x])*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*Gamma[1/2, (
(-I)*(a + b*ArcSin[c*x]))/b] + (4*c^2*d + e)*E^(((4*I)*a)/b + (3*I)*ArcSin[c*x])*Sqrt[(I*(a + b*ArcSin[c*x]))/
b]*Gamma[1/2, (I*(a + b*ArcSin[c*x]))/b] - Sqrt[3]*e*E^((3*I)*ArcSin[c*x])*Sqrt[((-I)*(a + b*ArcSin[c*x]))/b]*
Gamma[1/2, ((-3*I)*(a + b*ArcSin[c*x]))/b] - Sqrt[3]*e*E^((3*I)*((2*a)/b + ArcSin[c*x]))*Sqrt[(I*(a + b*ArcSin
[c*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c*x]))/b])/(4*b*c^3*E^(((3*I)*(a + b*ArcSin[c*x]))/b)*Sqrt[a + b*Ar
cSin[c*x]])

________________________________________________________________________________________

Maple [A]
time = 0.41, size = 460, normalized size = 1.17

method result size
default \(\frac {4 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) c^{2} d +4 \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) c^{2} d +\sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) e +\sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) e -\sqrt {-\frac {3}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \cos \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) e -\sqrt {-\frac {3}{b}}\, \sqrt {\pi }\, \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}\, \sin \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (c x \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) e -4 \cos \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) c^{2} d +\cos \left (-\frac {3 \left (a +b \arcsin \left (c x \right )\right )}{b}+\frac {3 a}{b}\right ) e -\cos \left (-\frac {a +b \arcsin \left (c x \right )}{b}+\frac {a}{b}\right ) e}{2 c^{3} b \sqrt {a +b \arcsin \left (c x \right )}}\) \(460\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(a+b*arcsin(c*x))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/c^3/b*(4*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(
1/2)*(a+b*arcsin(c*x))^(1/2)/b)*c^2*d+4*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(a/b)*Fresnel
C(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*c^2*d+(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x
))^(1/2)*cos(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*e+(-1/b)^(1/2)*Pi^(1/2)*2^
(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*e-(-3
/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*cos(3*a/b)*FresnelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*ar
csin(c*x))^(1/2)/b)*e-(-3/b)^(1/2)*Pi^(1/2)*2^(1/2)*(a+b*arcsin(c*x))^(1/2)*sin(3*a/b)*FresnelC(3*2^(1/2)/Pi^(
1/2)/(-3/b)^(1/2)*(a+b*arcsin(c*x))^(1/2)/b)*e-4*cos(-(a+b*arcsin(c*x))/b+a/b)*c^2*d+cos(-3*(a+b*arcsin(c*x))/
b+3*a/b)*e-cos(-(a+b*arcsin(c*x))/b+a/b)*e)/(a+b*arcsin(c*x))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsin(c*x))^(3/2),x, algorithm="maxima")

[Out]

integrate((x^2*e + d)/(b*arcsin(c*x) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsin(c*x))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {d + e x^{2}}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(a+b*asin(c*x))**(3/2),x)

[Out]

Integral((d + e*x**2)/(a + b*asin(c*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(a+b*arcsin(c*x))^(3/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/(b*arcsin(c*x) + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {e\,x^2+d}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a + b*asin(c*x))^(3/2),x)

[Out]

int((d + e*x^2)/(a + b*asin(c*x))^(3/2), x)

________________________________________________________________________________________